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T H E R M A L  E X P L O S I O N  O F  A R I S I N G  F L O W  O F  L I Q U I D  IN A 

R I N G  C H A N N E L  

T. A. Bodnar' UDC 532.51 +536.533 

The theory of the thermal explosion [1, 2] reduces essentially to establishing the conditions under which the medium 

considered, with distributed heat sources, loses thermal stability. This tradition is retained below, but we nevertheless bear in 

mind that thermal explosion is a consequence and occurs a certain time after the system loses thermal stability. The time 

interval separating the flow of  liquid from the instant when it loses stability until the thermal explosion occurs, understood in 

the physical sense (spontaneous combustion or detonation), may turn out to be fairly long (for example, longer than the time 

taken for a certain technological cycle to occur). We will therefore have in mind not only the loss in stability but also the rate 

at which the temperature increases. 

1. Formulat ion of  the Problem. Heat is dissipated in a flow of incompressible liquid moving in an axial direction 

between two cylinders with fixed radii r = r i, r = r e, as a result of exothermic reactions and viscous dissipation. The v~.rtical 

nature of the flow underlines the one-dimensional nature of the flow. We will consider the problem of determining the 

conditions under which an increase in the temperature of  the liquid due to exothermic reactions and viscous dissipation leads 

to a loss in stability of the thermal state and to a thermal exnlosion. 

The mathematical description of the thermal state of the flow of a liqt~id moving with constant velocity has the form 

[1-31 

~t = tr~rlr-~-r) + ~-J - ax +c~r)  +P(T); 

O=o, vp r + - - f f  

(1.1) 

(1.2) 

where x and r are cylindrical coordinates, t is the time, T is the temperature, K is the thermal diffusivity, v is the velocity of 

the flow, v is the kinematic viscosity, c is the heat capacity, p is the density, Ap is the pressure drop taking gravitation into 

account, L is the length of  the channel, and r is the source function. 

We will assume that the initial temperature of the liquid T(x, r, t = 0) = T 0, while the heat released as a result of 

exothermic reactions obeys Arrhenius's law 

~o(T) = pc exp - . 

Here E is the activation energy, R is the universal gas constant, Q is the thermal effect of  the reaction, and z is the kinetic 

constant. 
The solution of  system (1.1) and (1.2) will be investigated for flows which satisfy the following additional conditions: 

a) the flow is laminar, heat transfer by conduction in the axial direction is negligibly small compared with convection, and b) 

the flow is piston-type flow. The stability of the thermal state of  laminar flow and piston-type flow will be considered 

separately. 
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o = e ( r  - T o ) R - ~  ~, �9 = ~ ,  :,, = = : ' ,  q = ,'x: ~, 
ffi R T : " ' ,  R~ = ,',x; ~, 7~ = ~ x:  ~, L~ = Z.x -~, 

o I = at x~ 1, v t = v E ( c R T 2 o t )  - l ,  A p  1 = A p E ( c R T ~ p )  -1 

(t a = coRT02(EQz-1)exp(E(RT0) - I ) ,  x a = (Xta)0"5 are the time scales and the distance [4]) and expansion of the function in 
series in powers of 0 enables us to write system (1.1), (1.2) in the form 

+ ..,2~176 + �9 F o, (1.3) 

v t -  + ~ = O, r 1 ~rl~ larQ L, 
(1.4) 

where/~ is a parameter from the interval containing zero, A is a parameter which takes the values 0 and 1, and 

a = ~ exp(O(1 + ~ ) - ~ ) l , .  0- 

The theory of the stability of systems with distributed parameters [5-7] confirms that a loss in the stability of the 
solutions of the infinite-dimensional problem (1.3), (1.4) occurs in a space of finite dimensions. 

We can reduce the dimensions of the problem in question by constructing one of its central manifolds [5] or by the 

projection method [6, 7]. In the latter method, the solutions of system (1.3), (1.4) are transferred to a space of finite dimensions 

by means of projections onto an appropriate space of eigenfunctions. By considering (1.3), (1.4) as a certain evolution problem 
in the space of functions constructed, we can initially study the stability of the bifurcational solution (A = 0), and then the 

isolated solutions caused by the defect A = 1. 
2. Lamina r  Flow. By virtue of assumption a) above, the term 020/0xl 2 on the right-hand side of  Eq. (1.3) can be 

neglected, as a result of which the equation takes the form 

[a,,~&, 2 
aO 1 a ( r aO ~ aO v|--_.~tl ) ,-z-_ l + : %  + F(O,/, ,  A). 
~r ax, t~art) (2.1) 

We can use the following relations as the boundary and initial condhions of system (1.4), (2.1): 

O0(x t 'R i ' r )  , + o tp (x l ,  Ri,  ~) = O, l ---- 1, 2;  
ar 1 

(2.2) 

o~(R,) = o, ~ ffi 1, 2; (2.3) 

0(0, % 3) = O; (2.4) 

O(x l, % O) = O. (2.5) 
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By integrating Eq. (1.4) with boundary conditions (2.3) we obtain the distribution of the velocities [3] 

(w = R t / R  2, 0 < w ~< 1). 

Now, to construct the space of eigenfunctions we introduce the generating operator 

a~o~oo, o)0 a2:(o, o, o) 0 = 0 ,  
(2.6) 

defined in the rectangle (0, L 1) x (R 1, R2). 
The method of separation of variables enables us to investigate the solution (2.6) in the form of a product 

O = exp(2xl)~'(rt), (2.7) 

where X is the constant of  separation. 
Substituting (2.7) into (2.6) we obtain an equation in the function r 

rl ar t t (2.8) 

Solution (2.7) of Eq. (2.1) with conditions (2.2), (2.4) and (2.5) in the class of exponential functions does not enable 

us to obtain the limits of  thermal stability as a function of  the channel length L t. To obtain this relationship we will introduce 

the following additional constraint on the flow parameters: 

G = "o ~ ~ " a  ar t - R, art "dxt  + f f atOCxt' rt)r 'dr 'dxt-  f u'OCLt' r')rtdrt = O. 
) 0 R l R 1 

(2.9) 

Expression (2.9) is the linearized heat-balance equation, which establishes that, under steady-state conditions, the 

amount of  heat arriving in the ring channel through a section x t = 0 and dissipated as a result of the reactions occurring in 

the flow, is equal to the amount of heat removed through the surface r 1 = R 1, r 1 = R 2 and through the section x t = L 1. This 

means that the increase in the mean-volume temperature leads to exothermic reactions when 0 = 0 and viscous dissipation is 

negligible, and can be neglected. A similar treatment of  the heat balance is based on the fact that, due to the nonuniformity 

of the temperature distribution in the flow, the loss of thermal stability is of a local nature and occurs when G = 0, or, in other 

words, before the increase in the mean-volume temperature of  the liquid begins. In fact, in view of  the exponential form of 

the release of  heat, acceleration of  the exothermie reactions occurs over a narrow temperature range, and a loss of thermal 

stability should occur at the point in space at which the temperature of the liquid is a maximum. 
The use of (2.9) to solve (2.1) means that the temperature distribution at the input to the channel 0(0, r 1, r) will be 

found from solution (2.7) and, consequently, wilt depend on the length L 1 which, of course, contradicts condition (2.4) and 

does not correspond to the physical process. 
Pukhnachev drew attention to the fact that if L1/R 1 is a large parameter, the contradiction between conditions (2.4) 

and (2.9) disappears, and (2.9) can be regarded as a consequence of  the stationary form of (2.1) with conditions (2.2), (2.4) 

and (2.5), and the function G can be determined, apart from an additive function of the temperature f(0), which is equal to zero 

when 0(Xl, r 1, 'r) = 0. In fact, substituting (2.7) into (2.9) and integrating the latter with respect to x I we obtain an expression 
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from which it follows, that, for large values of L1/R 1, system (2.1), (2.2), (2.4), (2.5), and (2.9) is solvable. It follows from 

the same expression that if, instead of G = 0, we use G = f(0), only a displacement of the limits of  solvability of  system (2.1), 
(2.2), (2.4), (2.5), and (2.9) with respect to the parameter LI/R 1 occurs. This fact indicates the possibility of  carrying out 

successive approximations of the calculations using the heat-balance equation, which takes into account the flow of energy into 

the channel through the section x 1 = 0, provided that 0(0, r 1 r) ;e 0 when G =  0. 
Equation (2.8) with boundary conditions (2.2) is an eigenvalue problem. Of the various approximate methods available 

for determining the eigenvalues and eigenfunctions of such problems [8] the most formalized is the method of  solution in terms 

of the variational calculus [8, 9]. We confirm that the function ~b(rl) is a solution of (2.8) under conditions (2.2), it the integral 

It t' '] ' l - - f  
RI i~l 

(2 .  l o )  

reaches a minimum value with the constraint 

R 2 

f tYlrllp2drl = 1. 

R I (2.11) 

By applying Ritz's method of expansion to system (2.10), (2.11) we can write the approximate solution in the form 

of a series 

,-t (2.12) 

Here c i are coefficients which depend on/z, and ,Pi(r]) are any functions which satisfy boundary conditions (2.2). If  we take 

Eq. (2.8) with v 1 = 1 as the basic equation, we can naturally put 

(2.13) 

where In(~iiR2-trl) and Nn05iR2-1rl) are Bessel and Neumann functions of the first kind of the n-th order, and r i are the 

positive roots of  the equation 

det [ azlo(C])lallo(c)w )_-6R~IX,( 6)6R~tI~(~3~)aIN~ _ 6R~nNt( 6R~tN~(~3ca) II = O; 
I 

~R~txtCa,, , )  - =t /oCap)  

�9 , = = / % ( ~ p )  - ~ A - ~ r  �9 

Substituting (2.12) into the integrals (2.10) and (2.11), taking (2.13) into account, and then using Lagrange's  method 

we can obtain a system of equations in the coefficients c i (i = 1, 2 ... . .  N), which minimize the integral I: 

N 

. .E(at t  + 2/~a)c~ = 0 (l = 1, 2 ..... ?4). (2.14) 

Here 

2 R2 

+ rl(IZ - at)~o,(rt)~o,(rt) drt + EctR~o,(R)~ok(R);  ff~ = f q  alT,,(rxl~o,(r~)drx. 
nml R 2 

System (2.14) has a nontrivial solution if 
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de t laa  + ,lfl~l - 0. 
(2. ~ 5) 

The roots of  Eq. (2.15) ~k i (i = 1, 2 ... . .  N) are the eigenvalues of Eq. (2.8). For each ~'i w e  can find, from the 
simultaneous solution of (2.11) and (2.14), the coefficients c k (k = 1, 2 ..... N). Here it is appropriate to bear in mind that the 

eigenvalues X i and the coefficients %0} corresponding to are functions of the parameter/z: X i = ki(/z), %0) = ck(i)(#). Obvi- 

ously for each X i there will be a certain value of/z. The maximum value is of interest from the point of view of analyzing the 
stability. It can be shown that it corresponds to the minimum positive eigenvalue X i. To do this it is necessary to substitute the 

eigenfuction ~bn(rl) and integrate. The result is the relationship 

p = 

, 

R t 

rzW 

since 

R 2 R 2 

f qw2aq > o, f qt,~W2dq > O, 
R| R 1 

the maximum value o f / ,  is reached when ~k i is a minimum. 
We must consider separately the problem of the multiplicity of the eigenvalues X i, calculated approximately, since it 

is of fundamental importance when analyzing the stability by the projection method. In this respect all the solutions of (2.8) 

satisfy a Fredholm integral equation with an oscillating kernel, whence it follows that all the eigenvalues are simple (see [7], 

Appendix D). This assertion follows from the Strum oscillation theorem [8] as it applies to the system of equations (1.4), (2.1) 

with boundary conditions (2.2) and (2.3). N N 
Each of the functions 0 i = exp(XiXl)~,i(rl) is a solution of Eq. (2.1), and hence the relations 0 = ~ 0 i, G( ~ 0 i) = 0, 

i - I  ~ . .  i=l 
hold, where, by virtue of  the orthogonality of the functions ~ki(ri) the last relation, under steady-state conmtions, can be 

decomposed into a system of equations G(O i) = 0 (i = 1, 2 .... ). Under nonstationary conditions the function 01 makes the main 

contribution to G, and the remaining solutions fall off  exponentially with time. 
Hence, by substituting the expression 01 = exp(XlXl)~kl(r i) into Eq. (2.9) we can calculate the value of/* as a function 

of the parameters of  the problem ~, R z, R 2, L I, ~I ,  0% v 1, which can be considered as bifurcational. The solution of the 

linearized system (1.4), (2.1) is stable i f / ,  < 0. 
The space of eigenfunctions 0 i = exp(XiXl)~bi(rl) that are orthogonal with weight riv I with scalar product < 0 i, Oj* > 

in the interval (R 1, R2) is complete, and, consequently, any solution of nonlinear problem (1.4), (2.1), which satisfies the 
boundary conditions (2.2) and (2.3) can be represented with any degree of accuracy in the form of an expansion in functions 

of this space. The function 07 (j = 1, 2 .... ) that appears above belongs to the operator L, conjugates with Lt**, and, apart from 

a constant factor Aj, is equal to Ajrlvz0 j. 
From the def'mition of the region of the scalar product of  eigenfunctions O i ( i  = 1, 2 . . . )  we obtain the identity 

-- + {'PT(',), v '7(q)),  
n , t , ] =  1 ,2  ..... (2.16) 

where ~i*(rl) = 0j*exp(-kjxl) .  
Now, defining the amplitude s as the projection of 00 = 0(/z = 0) on the eigenspace associated with the conjugate 

vector 01o* = 01*(/~ = 0): e = <00, 01o*>, we will seek the bifurcational solution (A = 0) of  system (1.4), (2.1) in the 

neighborhood of the point (0,/z) = (0, 0) in the form of the series 

2" O = n! y ' p -- ~ P " "  ( 2 . 1 7 )  
a ~ l  a m |  
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Here the coefficients of the expansion Yn,/Zn (n = 1, 2 .... ) are to be determined. 

The parameter/z obtained from the equation G = 0 is a function of the length of the channel L~,/z = ~(L~). By virtue 

of this and of the identity (2.16) the functions 0 i, 0j* that occur on the right-hand side of Eq. (2.17) must be found at the point 

x~ = Lt in the form 0i = 0i(L1) , 0j* = 0j*(LI)- 
Substituting series (2.17) into (2.1) and equating to zero the sets of terms with like powers of the amplitude e, we 

obtain the following system of equations: 

L0Y ~ = 0; (2.18) 

LoY2 + 21~t azF(~176 0).y~ + a~F(0'a~0' 0).~ = 0 
(2.19) 

and an equation in higher power of t. 
It directly follows from Eq. (2.18) that Yl = 01o = 01 (/~ = 0). The condition for Eq. (2.19) to be solvable 

gives for the coefficient of the expansion p.] 
I ,a2~o. o ,o) =2 a2~o, o, o) - 

Hence, the limit of stability of  the solutions of system (1.4), (2.1) will be def'med in the (/z, e) plane by the expression/z =/zle. 

The normalization condition <010, 010"> = I (or, which is the same thing, A 1 = <010, rlv1010> - I ,  ~ = 1)enables 
us to write an expression for the limit of stability of the bifurcational solution of system (1.4), (2.1) in the form 

s =/~ -/~1 = 0. (2.20) 

Returning to system (1.4), (2.1) with conditions (2.2) and (2.3) when A = 1, we note that this problem differs from 

that considered in [10] solely in the form of the generating operator L~,. Hence, by using the expansion of the formally 

introduced relationship A = A(~, e), given in [10], we can write an equation for the limit of stability of the isolated solutions 

when e = 1: 

aF(o,o,o) -.. a2F(0,0,0) - 
s=~,-~,,+A( a/, ,st: ~ ~o,e;o> -'=~ 

(2.21) 

The limits of stability of the bifurcational and isolated solutions of system (1.4), (2.1) in the space of physical parameter 

fl, R 1, R 2, L 1, oq, ~2, vl is calculated by simultaneous solution of Eqs. (2.9), (2.20) and (2.9), (2.21), respectively. 
In connection with the use of approximate methods of determining the eigen-values and eigenfuctions of  the operator 

Lt,, the problem arises of the accuracy of the results obtained. We know [9], that as the number of terms of the series (2.12) 

increases the approximate eigenvalues k i approach the true values from above. Using the method proposed in [11], we can 

construct, without any essential difficulties, a space of eigenfunctions of the operator Lt, and determine the limits (2.20) and 

(2.21) when estimating the eigenvalues k i from below. 
As an example, consider the flow of a liquid in a ring channel when o~ = 0.05. The temperature on the outer wall of 

the channel is kept constant 0x 2 = co), and the inner wall is thermally insulated (cq = 0). If  we confine ourselves in (2.12) 

to the two-term approximation (N = 2), we obtain 

61 = 2.416, ~ = 5.576, a u = 0.779 + 0.132R~ - al), 

tilt = 6.030-10-2uoR22, a u = a2x = -9.208-10-' + 9.968.10-SR~ - at), 

:m = fl:t = 6.506. k0-'Uo/~2, a, ,  = 1.756 + 5.632-10"2R~2~ - al), 

tim = 2.076-10-Z%R~, 
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where v 0 is the maximum velocity in the flow, defined by the relation [3] 

The eigenvalue k i is the minimum positive root of the equation 

2 = 0 .  

Here 

The eigenfuctions of the operators L~, L~, corresponding to the value of k 1 when x~ = L 1 have the form 

-0 ~o = exp(;t ~(O)L~)J~(O) Ip~(a~n~tq ) + g(0)~~ 

cCt~)Cu ) = 1%R'2(6.030. I0 -2 + 1.994.10-4g(~) + 2.076-I0-292(/~))I-~ 

r <ztl + 21~u)~ u 

After multiplying 01o* by 

(d~(0))2R~%(2.S83 �9 10 -2 - 1.130• + 9.958• 

further calculations give 
G = r - exp(,1,f/2)L~)),l~'~(l.251 - 1.909g(p) 

- atR~(0.214- 6.140xI0."~/2))) 

- cCt)(p)R~ooexp(2~(p)Lt)(9.164 �9 10 -~ _ 1.769x10-2g(p)), 

(:~0,0.0) 
~o, 0~o) ffi 2a2( c~'(O) )3R~~ 

• (L694.10 -2 - 2.792• + 1.502-10-292(0) - 1.545x10-393(0)), 

(:go,o,o) lo ,  ffi -(r -1 

- 1.13oxlo-2g(o) + 9.958xlO-3:(o)), 

aF (0, O, 0), ~) 

x (1.522x10 - 2 -  1.183x10-2g(0)) 

+ aoc~l)(O)R~uo(4,460 �9 I0 -z + 1.995x10-2g(0))). 

The results of  calculations carried out using (2.20) and (2.21) of the limits of stability of  the bifurcational and isolated 
solutions (curves 1 and 2) obtained with R 2 = 6, fl = 10-2, ~'1 = 10-3 are shown in Fig. 1~ Curves 1 and 2 bound the region 

of stability from above. 

In Fig. 2 the region of stability of the bifurcational solutions obtained with R 2 = 6 and v 0 = 1 lies between curves 

1 and 2. The region of stability of the isolated solution obtained with R 2 = 6, v o = 1 and ~I = 10-3 lies under curve 3. 
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We can see that the limit of stability of the isolated solutions for fixed R 2, to, v0, cx 1, cx2, v 1 depend very weakly on 

the parameter B or, for a specific liquid with specified values of E and R, on the initial temperature. Nevertheless, a change 

in the initial temperature of the liquid not only affects the parameter/~ through a2(/3 ), but also acts on the power of  attraction 
of any solution (stable or unstable), considered as an attractor, via the time scale t a, 0 - exp(stta-1).  This is important in the 

sense that if the dimensions of the channel and the boundary conditions are such that s > 0 for any B < < 1, then, by 

reducing the temperature we can achieve an increase in the scale t a and stabilize the thermal state, meaning by this that the 

temperature of the liquid during a certain finite time interval will change only slightly. The problem of  stabilization may be- 

come of paramount importance in the starting and Stopping of technological processes connected with the transport of  reactive 

liquid in ring charmels- Thus, if the point M in Fig. 1 represents a stable thermal state with respect to curve 2, then, by aiming 

towards this point from v 0 = 0 or leaving it in the direction v 0 = 0, we must move in a velocity field for which the thermal 

state is unstable. Hence, when such processes start up or stop, when, based on the above calculations, we can assume that a 

loss in thermal stability is most probable, we must reduce the temperature of the liquid or, if this is possible, alter its chemical 

composition in such a way as to increase its activation energy. In any case, the transients must occur as rapidly as possible. 

3. Pis ton-Type Flow. For slow flows, for which we cannot neglect the conductive component of  the heat transfer along 

the axis, we must assume that the rate of flow is constant over the cross section of the channel v 1 = v 0. 

In this case the generating operator is 

I+, - - + + - -- O. ( 3 .  l )  

For (3. t) and for system (I .3) ,  (1.4) boundary conditions (2.2) hold, and in the planes x t = O, x 1 = L 1 they have the form 

aO(L t, q. *) 
0(0, r t, *) = 0, ~ - 0. (3.2) 

The eigenvalues of the operator (3.1) for boundary conditions (2.2) and (3.2) are as follows: 

~ l , = a ~ - ~ - ~ ' ~ ,  t=  1,2 . . . .  
R 2 

Here 3'i are the positive roots of the equation "r = v0/2tg('YL1), and the values of 5 i are the same as in (2.13). The solution 

of  (3.1) is stable if ~t = X 1 < 0. 

All  the eigenvalues X i are double, and to each of them there correspond two independent functions 

~o u = lo( r .R ~ lr t)sin(y xx )exp(  O.Suoxt) , 

s %  = ,v0(3  ~ ' ~ , ) s i n ( v , x , ) e x p C 0 - S v o x , )  �9 

For double eigenvalues of the operator L~, system (1.3), (1.4) can have three solutions for the same initial data, which 

represent points of intersection of conical sections in a plane with coordinates (/~I, 7/). The relation between the coordinates 

t~l, +/and the parameters of  the problem is given in [12]. 

The projections of the solutions of system (1.3), (1.4) on the double null-space of the operator Lt+ at each point of 

intersection of the conical sections (#l(i); ~/(i)) (i = 1-3) can be written as 
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-0,3- 

i 

0,6- 

og- 

Fig. 3 Fig. 4 

where 0(i) is the solution at the i-th point of intersection of the conical sections, Sl(i), s2(i) are parameters, a method of 

determining which for the bifurcational and isolated solutions is described in [12], andf1(i)(xl, rl), f2(i)(xl, r 1) are functions 

of the coordinates. 
The parameters Sl(i), s2(i) (i = 1-3) can be real or complex. If we consider real numbers as a special case of  complex 

numbers, the stability of the solutions of (1.3) and (1.4) is defined by the inequality 

~max(Res~ '~, Res~ '~) < 0 

provided that ReSl (i), Res2 (i) have the same signs [12]. 

We carried out calculations for a channel with walls of constant temperature a l  = oo, a2 = oo for the following initial 

data: w = 0.05, R 2 = 6, /3 = 10 -2,  L 1 = 1.93. Here and henceforth the length L l was chosen so that the solution of (3.1) 

lay on the boundary of stability (/L = 0). 
As a result of the calculations we obtained three bifurcational solutions of system (1.3), (1.4): 

(u(~1~; r/ca)) = (1.019; -9 .501) ,  ~ ) ;  r/c2)) = ( -0 ,291 ;  

-1 ,912-10-2) ,  t,,c3~. 7/c3)) = ( -0 .113;  -0 .321)  

(Fig. 3, the point (/~i (1), r/(1)) is outside the limits of the figure). These solutions are points of stationary equilibrium, for which 

we have the following parameters: 

(-"~. ~'~) -- ( - 1 3 . 4 1 s ;  -s0 .242) ,  (sc,2~; s~2~) = (s.s92; 
-1 .813) ,  (s~:; s~ )) = (4.106; 0.929), 

/~ > 0, and at the third point when/~ < 0. The solution at the second point is unstable for any/x. 

By considering the points of stationary equilibrium as attractors, it is easy to show that both when/z > 0 and when 
/~ < 0 the trapping of any perturbations of the temperature by a stable or unstable attractor is approximately equiprobable. 

For the same initial data as above, but for the case when the inner wall of  the channel is thermally insulated(eq =0) 

and L 1 = 1.78 (from the condition/z = 0), system (1.3), (1.4) has a single real solution and two complex-conjugate solutions 

(,u~a~; r/ca)) = ( -0 ,227;  -9,789),  (,u~2); r/c')) -- ( - 0 , 3 5 3  - 0,312i; 5,534-10 -2 + 0,446l). 

The third point is not given. For these solutions we obtain 

Ct). s t , s~ 1)) = (0 ,363; -27 .675) ,  

(_(a~. s~2~) = ( - 0 . t S 0  + 0.156t; - t , 6 4 9  - 2.0030, 

whence it follows that the stationary solution is unstable for any/z,  while the periodic solutions (Fig. 4, curve 1) are stable 

when/z > O. 
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An increase or decrease in the outer radius of the channel for the same initial data has no effect on the overall pattern 

of the distribution of the solutions, but their attractive force increases or decreases. Thus, if we take R 2 = 12, we have (sl(D; 

s2 (1)) = (1.117; -85.177), (s1(2); s2 (2)) = ( -0 .140 + 0.479i; -5 .076 - 6.144t3, whence it can be seen that for any/~ the 

rate of increase or decrease of the temperature (Fig. 4, curve 2) is greater than for R 2 = 6. 
Of course, here, as in the case of laminar flow, the rate of change of the temperature in real time must be found taking 

the scale t a into account. 
I wish to thank the referee for his constructive comments and also those who took part in the seminar run by V. V. 

Pukhnachev at the IGiL, Siberian Section, Russian Academy of Sciences for discussing the results. 
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